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Abstract
T-die casting film and biaxially oriented films produced by both the tentering process and the double
bubble tubular film one are mainly discussed in this presentation.

T-die casting film process is widely used to produce the flat film. Recently the casting film
process is required to get high productivity without any instability and unbalanced orientation, and to
produce uniform film thickness. In this reason the theoretical approach of film processing is studied to
predict the orientation of film and the draw resonance and also to find the optimum process condition
which makes high quality film with high production speed.

Biaxially oriented tentering process is widely used to produce plastic films such as packaging film,
music & video tapes, condenser film and so on. This process has been required to produce thinner film and
more uniform film thickness at high speed without any film break and high quality film. In order to achieve
these requirements, the rheological behavior of resin and the experimental and theoretical analyses during

the tentering process should be studied. Double bubble tubular process is also presented.
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weight, molecular weight distribution and long chain branching and further tacticity for
polypropylene during the crystallization process.

For example, the melt rheologies are shown in Fig.1 for various methods. High molecular
weight portion and long chain branching influence the relaxation time of melt polymer and

time-dependent elongational viscosity. Relaxation times are obtained by cone & plate rheometer.

2. T-die Casting Process
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The instability parametere is defined as follows.

o =L/V *(de /dz),-L

L: Air Gap, V: Take-up Velocity, (de/dz),-.: Deformation Rate at the roll touch position
The instability ,namely "draw resonance", is a function of the parameters of dimensionless
deformation ratee and draw down ratio V/V,. The reduction of deformation rate gap at the roll touch
position improves stability of film. The polymer which is deformed near the exit of the die ,namely,
the polymer having strain rate hardening and high activation energy of elongational viscosity has
better stability. High air cooling also makes better stability. The theoretical results shown in Figure 3
predict that the narrow molecular weight distribution and the low molecular weight make better
stability.

The high orientation film in the machine direction which is apt to be produced by high

take-up speed makes low impact strength. To avoid it, it is important to reduce the long relaxation

time portion of polymer.

3. Cooling Process
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because of crystallinity. Figure 4 shows the temperature distribution of the sheets and the

temperature difference across the film thickness for three chill rolls' cooling without any water cooling.

The temperature differences are large. The water spray cooling system makes higher cooling speed
and smaller temperature difference. High cooling rate is preferable to reduce crystallinity. Chill roll
size and cooling method are very important.

The high tacticity polymer has high crystallization speed and the high cooling speed is
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method of film quality

and processability such as
film uniformity,
stretchability and

continuous  productivity

at high speed production
are needed by using a small amount of sample and a simple method. This research is the experimental and
theoretical approach to clear these kinds of problems.

The temperature range of stretchability is very much dependent on the composition distribution of
PP, and stretchability and uniform thickness are dependent on the molecular weight distribution and
tacticity of PP which influences stretching force build-up at the higher stretching ratio and initial stretching
one. The processability is possible to be predicted by the theoretical analysis and the table tenter data
obtained with small amount of resin which are corespondent with resin design.

The visco-elastic model is assumed as a mechanical model and the factors of viscosities
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parameter *i and elastic moduli i are obtained by the curve of stretching force and stretching ratio
which is obtained by the small size tentering machine. The out-put results of deformation pattern and
stress one during the tentering process are shown in Figure 7. These results suggest that bowing
phenomena, stress build-up and uniformity are predictable. From this kind of information,

processability and optimum polymer design are predicted for biaxially oriented polypropylene.
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5.Blown Film Extrusion and Double Bubble Tubular Film Process
Blown film extrusion is one of the most important film processes to produce plastic film. The

theoretical analysis is widely studied. The activation energy of polyethylene which is influenced by
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biaxially oriented polystyrene sheet & film (OPS) , shrinkage film of polyolefins, nylon film and so on.
One example of double bubble tubular film process for polyolefin PP and PE is shown in Figure 8.
The first bubble is formed at high resin temperature and then the second bubble is stretched and
inflated at lower temperature and at high stretching force.

The basic theoretical analyses of the first bubble and the second bubble are almost same. The
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Fourel0.@viaximum Stretching Stress and Thermformability

Thermoformability is very important for the biaxially oriented polystyrene film and sheet

(OPS). The low stretching stress gives low orientation of the sheet and low physical properties.

The stretching stress which is given during the stretching process is preserved inside the sheet

and too high stress makes low processability for thermoformability especially at the corner of the tray.

Predicted stretching stress has a good relationship with OPS shrinkage Stress. From these results,

thermoformability at the corner of the tray and the physical properties of tray are predicted.

References

1. V.Rauschenberger; ANTEC Proceeding 150,56,(1998)
T.Kanai; 5™-Polym.Proc.Soc.Meeting (PPS-5) Proceeding
T.Kanai,G.A.Campbel; "Film Processing" Hanser Verlag (1999)

Intern. Polym. Process 38,7 (1990)

T.Kanai ,M.Takashige, T.Iwai,J.Shimizu; Senigakkaishi T-272,41 (1985)
T.Kanai; 16"™-Polym.Proc.Soc.Meeting (PPS-16) Proceeding (2000)

2
3
4. M.Takashige,T.Kanai;
5
6

HOME



	INDEX: 


